

HUB-VM102

Programmierhandbuch

Dokumentversion 1.3 | Veröffentlichung am: 20. Januar 2025

VORLÄUFIGE VERSION / PRELIMINARY VERSION

Inhaltsverzeichnis

Rechtliche Hinweise	3
1. Allgemeine Gebrauchsinformation	5
1.1. Mitgeltende Dokumente	5
2. Konfiguration der Schnittstellen	6
2.1. Konfiguration der Modbus-Parameter	6
2.2. Signalverarbeitung	7
2.3. Signalspeicherung	9
2.4. Erzeugung eines Frequenzspektrums mittels FFT 1	0
2.5. Auslesen der Daten über Modbus	11
2.6. Konfiguration eines IIR-Filters	11
3. Parameterkonfiguration über das MQTT-Protokoll 1	4
4. IP-Adresse des HUB-VM102 ändern 1	6
5. Parameterverzeichnis 1	8
5.1. Parameter für Signalverarbeitung	8
5.2. Parameter für Gerätekonfiguration 2	20

Rechtliche Hinweise

Sicherheitshinweise

Diese Dokumentation enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Lesen Sie die Sicherheitshinweise aufmerksam durch und bewahren Sie diese Dokumentation immer in Reichweite auf.

Je nach Gefährdungsstufe werden die Sicherheitshinweise in abnehmender Reihenfolge wie folgt dargestellt:

GEFAHR

Hinweis auf eine unmittelbare Gefahr für den Menschen. Wird bei Nichtbeachtung zu irreversiblen Verletzungen oder zum Tod führen.

WARNUNG

Hinweis auf eine erkennbare Gefahr für den Menschen. Kann bei Nichtbeachtung zu irreversiblen Verletzungen oder zum Tod führen.

VORSICHT

Hinweis auf eine erkennbare Gefahr für den Menschen oder auf möglichen Sachschaden. Kann bei Nichtbeachtung zu reversiblen Verletzungen oder zu Sachschaden führen.

ACHTUNG

Hinweis auf möglichen Sachschaden. Kann bei Nichtbeachtung zu Sachschäden führen.

HINWEIS

Unter Hinweis finden Sie Tipps, Empfehlungen und nützliche Informationen zu speziellen Handlungsschritten und Sachverhalten.

TIPP

Unter Empfehlung finden Sie Tipps und Tricks sowie Empfehlungen von in.hub, die sich im Umgang mit den Produkten als hilfreich erwiesen haben.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt darf nur von Personal gehandhabt werden, das für die jeweilige Aufgabenstellung qualifiziert ist. Installation, Inbetriebnahme und Betrieb des Gerätes darf nur unter Beachtung der zugehörigen Dokumentation und den darin enthaltenen Sicherheitshinweisen erfolgen.

Qualifiziertes Personal ist aufgrund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Programmierhandbuch

HUB-VM102

3

Kenntnisse über PCs, Betriebssysteme und Webanwendungen werden vorausgesetzt. Allgemeine Kenntnisse auf dem Gebiet der Automatisierungstechnik werden empfohlen.

Bestimmungsgemäßer Gebrauch

in.hub-Produkte dürfen nur für die in den entsprechenden technischen Dokumentationen vorgesehenen Einsatzfällen verwendet werden.

Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von in.hub empfohlen bzw. zugelassen sein.

Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus.

Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

in.hub übernimmt keine Haftung für Fehlfunktionen des Produkts, die infolge unsachgemäßer Handhabung, mechanischer Beschädigung, fehlerhafter Anwendung und nicht zweckgebundener Verwendung entstehen.

Der Inhalt der Druckschrift wurde auf Übereinstimmung mit dem beschriebenen Produkt geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft. Notwendige Korrekturen werden in den nachfolgenden Auflagen enthalten sein.

Programmierhandbuch

HUB-VM102

4

1. Allgemeine Gebrauchsinformation

Dieses Programmierhandbuch bietet Unterstützung, wenn Sie für das Einrichten des HUB-VM102 die Systemsoftware SIINEOS nicht verwenden können, weil:

- Sie kein Master-Gateway haben
- SIINEOS die Funktion nicht bietet, die Sie benötigen

1.1. Mitgeltende Dokumente

Dieses Programmierhandbuch ist nur in Zusammenhang mit der Betriebsanleitung des HUB-VM102 gültig. Bitte lesen Sie die Betriebsanleitung sorgfältig und halten Sie sie bereit, wenn Sie die Hardware-Programmierung eigenständig vornehmen.

Die aktuelle Betriebsanleitung können Sie im Download-Portal herunterladen: https://down-load.inhub.de/vm102/

2. Konfiguration der Schnittstellen

Wenn Sie ein HUB-VM102 verwenden und die Daten der Vibrationssensoren an ein in.hubeigenes Master-Gateway übergeben, konfigurieren Sie die Schnittstellen in der I/O-Verwaltung von SIINEOS, welches auf dem Master-Gateway installiert ist. In diesem Fall benötigen Sie dieses Programmierhandbuch nicht, sondern nehmen das Benutzerhandbuch von SIINE-OS zur Hand. Sie finden es im Download-Portal unter https://download.inhub.de/siineos/.

Wenn Sie eigene oder Drittanbieter-Geräte verwenden und das HUB-VM102 mit diesen verbinden möchten, dann erfolgt die interne Konfiguration über einen Parametersatz, der über die Schnittstellen des HUB-VM102 modifiziert werden kann. Die Parametrierung bleibt auch nach Trennung der Stromversorgung im Gerät erhalten. Wie Sie dabei vorgehen, erfahren Sie in den folgenden Kapiteln. Beachten Sie aber, dass das Speichern der Parametrierung von Ihnen initiiert werden muss und nicht automatisch erfolgt.

2.1. Konfiguration der Modbus-Parameter

Konfiguration und Datenaustausch zwischen HUB-VM102 und dem Gateway erfolgt mittels Modbus. Der Backplane-Bus gestattet die Kommunikation über Modbus RTU, während die Ethernet-Schnittstelle das Protokoll Modbus TCP unterstützt. Außerdem können Daten über das Protokoll MQTT ausgetauscht werden.

Die Konfiguration erfolgt über Parameternummern zwischen 0 und 127. Über folgende Modbus-Funktionscodes können die Parameter ausgelesen und geändert werden:

- Read Holding Registers (0x03)
- Write Multiple Registers (0x10)

Die Konfigurations- und Steuerparameter sind 32 Bit breit. Über das Modbus-Protokoll erfolgt daher der Zugriff auf die oberen und unteren 16 Bit über aufeinanderfolgende Modbus-Adressen:

Modbus Adresse	Parameter
0x00 (Bit 015), 0x01 (Bit 1631)	PO
0x02, 0x03	P1
0x04, 0x05	P2
	•••
0xFE, 0xFF	P127

Geänderte Parameter können im internen EEPROM gespeichert werden. Damit stehen sie auch nach einer Unterbrechung der Stromversorgung zur Verfügung.

- Schalten Sie das Gerät in den Bereitschaftsmodus, bevor Sie die Parameter speichern: P100 = 0 (device off)
- Anschließend können die Parameter im EEPROM dauerhaft gespeichert werden: P102 = 1 (store parameter)

Programmierhandbuch

Modbus ID	P96	1 254
		Ist der Parameter außerhalb des zulässigen Bereichs, wird der Standardwert (1) übernommen
Modbus Baudrate	P97	9600 115200 1000000
		Ist der Parameter außerhalb des zulässigen Bereichs, wird der Standardwert (115200) übernommen

Die Modbus-Schnittstelle kann über die Parameter 96 und 97 konfiguriert werden:

Für Modbus TCP gibt es zusätzlich die Parameter 91 bis 93:

IP-Adresse	P91	192.168.1.200 (default)
Netzmaske	P92	255.255.255.0 (default)
Gateway-Adresse	P93	192.168.1.1 (default)

HINWEIS

Die Parameter 91 - 93, 96 und 97 werden erst nach einem Reset wirksam. Speichern Sie daher die Parameter nach Änderung im EEPROM.

2.2. Signalverarbeitung

In Abhängigkeit der Parameterkonfiguration erfolgt die Signalverarbeitung jedes Kanals nach dem folgenden Schema:

IEPE-Kanal 1

Signal	Erläuterung	Konfigurations- parameter	Grenzen
HP	Hochpass 1. Ordnung zur Eli- minierung des DC-Offsets	P13, P23	100 1000 10000 mHz
INT	Integrator zur Ermittlung der Schwinggeschwindigkeit	P14, P24	100 1000 10000 mHz
ТР	Tiefpass 1. Ordnung	P15, P25	100 5000 10000 Hz

Programmierhandbuch

Signal	Erläuterung	Konfigurations- parameter	Grenzen
IIR	Digitaler IIR-Filter	Siehe Tabellen in Filters [11]	Kapitel Konfiguration eines IIR-
RMS	Gleitender Effektivwert	P16, P26	100 1000 10000 mHz
PEAK	Spitzenwert	P31, P41 P32, P42	100 1000 10000 µs 10 100 1000 ms

Der aktuelle Effektivwert kann über die Parameter 1 und 2 ausgelesen werden. Über Parameter 3 und 4 wird der aktuelle Spitzenwert angezeigt.

Para- meter	Erläuterung	Auflösung
P1	Effektivwert Kanal 1	μV
P2	Effektivwert Kanal 2	μV
P3	Spitzenwert Kanal 1	μV
P4	Spitzenwert Kanal 2	μV
P5	Dominante Frequenz IEPE-Sensor Kanal 1	mHz
P6	Dominante Frequenz IEPE-Sensor Kanal 2	mHz
P7	Versorgungsspannung IEPE-Sensor Kanal 1	mV
P8	Versorgungsspannung IEPE-Sensor Kanal 2	mV
Р9	Versorgungsspannung analog (~19V)	mV
P65	Frequenz Digital-Input 1	mHz
P66	Frequenz Digital-Input 2	mHz

Die einzelnen Filter können über Parameter 11 und 21 deaktiviert werden:

Bit	Funktion
0	Kanal On/Off
1	Hochpass On/Off
2	Beschleunigung/Geschwindigkeit (Integrator On/Off)
3	Tiefpass On/Off
4	Biquad Filter On/Off

Programmierhandbuch

2.3. Signalspeicherung

Die abgetasteten Sensorsignale können direkt in einem externen RAM des Mikrocontrollers gespeichert werden. Pro Kanal können 131072 (0x20000) Samples gespeichert werden. Der Speicher ist in vier Segmente unterteilt:

Sampling-Speicher

Über Parameter 50 wird der Speicher aktiviert. Dabei ist sowohl ein permanentes Sampling der Sensorsignale möglich als auch ein ereignisgesteuertes Sampling (Trigger-Funktion). Läuft der Speicher über (0x1FFFF), beginnt die Speicherung wieder bei Adresse 0.

Bit	Funktion
0	Sampling Off
1	Permanent
2	Getriggert durch Effektivwert Kanal 1
3	Getriggert durch Effektivwert Kanal 2
4	Getriggert durch Effektivwert Kanal 1 Kanal 2 (ODER-verknüpft)
10	Getriggert durch Digital Input 1 (Übergang L/H)
11	Getriggert durch Digital Input 1 (Übergang H/L)
12	Getriggert durch Digital Input 2 (Übergang L/H)
13	Getriggert durch Digital Input 2 (Übergang H/L)
14	Getriggert durch Frequenz Digital Input 1 (steigend)
15	Getriggert durch Frequenz Digital Input 1 (fallend)
16	Getriggert durch Frequenz Digital Input 2 (steigend)
17	Getriggert durch Frequenz Digital Input 2 (fallend)

Parameter 50 hat folgende Funktionen:

Programmierhandbuch

Bit	Funktion
>21	Write-Pointer zurücksetzen, Sampling deaktivieren, Trigger deaktivieren.

Nach dem Trigger-Event wird Parameter 50 automatisch auf 0 gesetzt.

Für Trigger-Quelle 2 - 4 und 14 - 17 kann mit Parameter 51 und 52 die Trigger-Schwelle angepasst werden.

Über eine Pre-Trigger-Funktion kann der Trigger-Punkt innerhalb des Sampling-Fensters verschoben werden. Ist Parameter 53 = 0, so ist der Pre-Trigger deaktiviert. Nach dem Trigger-Event werden genau 131072 (0x20000) Samples aufgenommen.

Um den Pre-Trigger zu nutzen, ist zunächst in Parameter 53 der gewünschte Pre-Trigger Wert zu schreiben, bspw. 0x8000.

Danach aktivieren Sie das permanente Sampling (P50 = 1). Dabei wird der Speicher mit aktuellen Werten gefüllt. Der eigentliche Trigger wird aktiviert, indem Parameter 50 mit der jeweiligen Trigger-Quelle konfiguriert wird.

Nach dem Trigger-Event werden in diesem Fall noch genau 98304 Samples (0x20000 – 0x8000 = 0x18000) aufgenommen. Bevor der Trigger aktiviert wird, müssen Sie sicherstellen, dass der Pre-Trigger-Speicher gefüllt ist. Dies kann über Bit 4 des Parameters 10 geschehen.

Um anschließend die Samples aus dem Speicher zu lesen, kann der Beginn des Sample-Fensters wie folgt bestimmt werden: aktueller Address-Pointer (P61,62) + 1.

2.4. Erzeugung eines Frequenzspektrums mittels FFT

Von den Daten im RAM kann mittels FFT ein Frequenzspektrum erzeugt werden. Die Länge der FFT entspricht 215 (= 32768). Dies ist ein Viertel des Sample-Fensters. Der Sampling-Speicher jedes Kanals ist in vier Segmente unterteilt. Von welchem Segment die FFT ausgeführt wird, ist abhängig vom aktuellen Adress-Pointer (Parameter 61 und 62). Steht bspw. der Adress-Pointer beim Auslösen der FFT an Stelle 0x8001, so wird die FFT mit den Daten aus Segment 1 ausgeführt (Abbildung 3). Es wird also immer das letzte vollständig beschriebene Segment genutzt. Dadurch wird es möglich, parallel zum Sampling eine FFT auszuführen.

Die FFT-Funktion wird über Parameter 55 und 56 gesteuert:

- Über Parameter 55 kann eine FFT-Berechnung ausgelöst werden.
- Parameter 56 dient zur Konfiguration des FFT-Ergebnisses und zum Umschalten zwischen linearer und logarithmischer Darstellung (in dB).

Para- meter	Funktion
P55	FFT-Steuerung
	0: keine Berechnung

Programmierhandbuch

Para- meter	Funktion
	1: Starte FFT-Berechnung Kanal 1
	2: Starte FFT-Berechnung Kanal 2
	Parameter wird nach FFT-Berechnung gelöscht
P56	Bezugspegel in mV für FFT-Berechnung in dB
	Wenn 0: FFT-Ergebnis absolut mit 0,1 µV-Auflösung

2.5. Auslesen der Daten über Modbus

ADC-Sampledaten und FFT-Daten können über den Funktionscode "Read Input Registers (0x04)" über Modbus gelesen werden.

In Abhängigkeit des gewählten Adressbereichs (Parameter 60) ist ein Zugriff auf die jeweiligen Daten möglich:

Parameter 60	Daten-Array	Modbus Adressbereich
0x03 0x0A	Datenspeicher Kanal 1 (8 Speicherbereiche zu je 64kByte)	0x0 0x7FFF
0x0B 0x12	Datenspeicher Kanal 2 (8 Speicherbereiche zu je 64kByte)	0x0 0x7FFF
0x13	FFT-Daten Kanal 1	0x0 0x7FFF
0x14	FFT-Daten Kanal 2	0x0 0x7FFF

Der aktuelle Sample-Pointer kann über Parameter P61 (Kanal 1), bzw. P62 (Kanal 2) gelesen werden. Der Pointer kann über die Modbus-Schnittstelle nicht modifiziert werden.

Die Daten sind als 32Bit-Signed-Integer gespeichert.

2.6. Konfiguration eines IIR-Filters

Jeder Kanal besitzt jeweils einen konfigurierbaren IIR-Filter. Dieser Filter besteht aus mehreren Biquad-Elementen mit folgender mathematischer Repräsentation:

$$H(z) = \frac{b_2 z^{-2} + b_1 z^{-1} + b_0}{a_2 z^{-2} + a_1 z^{-1} + a_0}$$

Es können mehrere dieser Filter-Elemente hintereinander in Echtzeit berechnet werden. Die Anzahl ist allerdings durch die Rechenleistung des Mikrocontrollers begrenzt.

Programmierhandbuch

IIR-Filter

Die IIR-Filter-Koeffizienten werden in einem internen Koeffizienten-Speicher verwaltet.

Der Koeffizient a_0 ist immer eins.

Es können maximal 20 Biquad-Koeffizienten gespeichert werden. Die Koeffizienten werden als 32 Bit-Signed-Integer gespeichert. Zusätzlich gibt es einen Skalierungswert zwischen 0 und 31. Mit diesem kann die Bit-Verschiebung der Koeffizienten bestimmt werden (typischerweise zwischen 16 und 31).

COEF 19	a1	a2	b0	b1	b2	SCAL
:	:			-	ł	:
COEF 2	a1	a2	b0	b1	b2	SCAL
COEF 1	a1	a2	b0	b1	b2	SCAL
COEF 0	a1	a2	b0	b1	b2	SCAL

IIR-Koeffizienten-Speicher

Mit Hilfe der Parameter 70 - 76 kann der Koeffizienten-Speicher beschrieben werden. Die Koeffizienten können auch im internen EEPROM hinterlegt werden.

Übertragen Sie die Koeffizienten-Daten zunächst mittels der Parameter 71 - 76. Anschließend können Sie die Koeffizienten mittels Parameter 70 an die entsprechende Stelle im Speicher hinterlegen.

Wird die Funktion "Lesen" ausgeführt, so stehen die gespeicherten Koeffizienten in den Parametern 71 - 76 zur Verfügung.

Wird der Koeffizienten-Speicher in den EEPROM übertragen, so steht er nach dem Reset bzw. nach Unterbrechung der Stromversorgung wieder zur Verfügung.

Para- meter	Funktion
P70	Bit 015: Koeffizienten-Nummer (019) Bit 16, 17: Funktion

Programmierhandbuch

HUB-VM102

12

Para- meter	Funktion
	1: Lesen
	2: Schreiben
	3: alle Biquad-Koeffizienten (019) in EEPROM spei- chern
P71	Koeffizient a ₁
P72	Koeffizient a ₂
P73	Koeffizient b ₀
P74	Koeffizient b ₁
P75	Koeffizient b ₂
P76	Skalierung zwischen 0 und 31 (Bit-Verschiebung der Koeffizienten)

Der eigentliche IIR-Filter kann mittels Parameter 17, 18 und 27, 28 konfiguriert werden:

Parameter	Kanal 1	Kanal 2	Bemerkung
Erster Biquad-Koeffizient (Koeffizenten-Speicher)	P17	P27	Zwischen 0 und 19
Anzahl Biquad-Elemente	P18	P28	P17 + P18 < 41 P27 + P28 < 41
IIR-Filter aktivieren	P11	P21	Bit 4

Beispiel: P17 = 0, P18 = 4

Der IIR-Filter des Kanals 1 besteht aus 4 Biquad-Elementen. Die dazugehörigen Koeffizienten werden aus dem Koeffizienten-Speicher ab Position 0 geladen.

Um den IIR-Filter des jeweiligen Kanals zu aktivieren, setzen Sie Bit 4 der Parameter P11, bzw. P21. Beachten Sie aber: Bei Änderungen werden alle Bits im Register beschrieben.

Über Parameter 82 (Kanal 1) und 82 ist eine Überprüfung der Rechenleistung möglich. Da der IIR-Filter 48000-mal pro Sekunde ausgeführt wird (nach jedem Sampling), ist eine Überwachung der Rechenzeit notwendig.

Parameter 81 und 82 sollten nicht größer als 40 sein.

3. Parameterkonfiguration über das MQTT-Protokoll

Mit Hilfe von MQTT-Protokollen können Parameter und Datenarrays (ADC- und FFT-Daten) veröffentlicht werden. Außerdem ist die Parameterkonfiguration über MQTT möglich. Über Parameter 91 - 94 wird die Ethernet-Schnittstelle konfiguriert.

Parameter	Funktion	Default-Einstellung
P91	IP-Adresse	192.168.1.200
P92	Netzmaske	255.255.255.0
P93	Gateway-Adresse	192.168.1.1
P94	MQTT-Server Adresse	192.168.1.2

Port: 1883

Nach einer Änderung müssen die Parameter im EEPROM gespeichert werden. Die Übernahme erfolgt nach dem Reset:

P100 = 0 (Gerät deaktivieren)

P102 = 1 (Parameter in EEPROM speichern)

P102 = 0xffff0000 (Gerät zurücksetzen)

Konfiguration / Aufgabe				
Parameter ändern	Торіс	vm102/dev <geräte-seriennummer>/paramset/</geräte-seriennummer>		
	Message	Parameterwerte in ASCII (32-Bit Signed-Integer)		
	Beispiel	Topic: vm102/dev00142DE082EB/paramset/p12 Message: 1000		
Parameter ver- öffentlichen	Торіс	vm102/dev <geräte-seriennummer>/parameter/</geräte-seriennummer>		
	Message	Parameterwerte in ASCII (32-Bit Signed-Integer)		
	Beispiel	Topic: vm102/dev00142DE082EB/parameter/p12 Message: 1000		
Parameter zu	Торіс	vm102/dev <geräte-seriennummer>/parampublish/</geräte-seriennummer>		
veröffentlichen kann über fol- gendes Topic erzwungen wer- den	Message	Parameterwerte in ASCII: "1,2,10,11" oder "1-11" (32-Bit Signed-Integer)		
	Beispiel	Topic: vm102/dev00142DE082EB/parampublish/p12 Message: 1,2,10,11		
Auto-Publish für Parameter 1 bis 9	Parameter werden in regelmäßigem Abstand automatisch veröffentlicht Parameter 78: Intervall in Sekunden			

Programmierhandbuch

Konfiguration / Aufgabe				
	Parameter 79: entsprechenden Parameter aktivieren (Bit1 > P1, Bit2 > P2,)			
ADC-Rohdaten und FFT-Daten veröffentlichen	Торіс	vm102/dev <geräte-seriennummer>/datapublish/ch1 vm102/dev<geräte-seriennummer>/datapublish/ch2 vm102/dev<geräte-seriennummer>/datapublish/fft1</geräte-seriennummer></geräte-seriennummer></geräte-seriennummer>		
	Message	"start= <startadresse beginnend="" bei<br="" speicherbereich="">0>,len=<anzahl 100="" daten,="" max.="">,topic=<topic mit<br="">dem die Daten veröffentlicht werden, max. 50 Zei- chen>"</topic></anzahl></startadresse>		
	Beispiel	Topic: vm102/dev00142DE082EB/datapublish/ch1 Message: start=0,len=20,topic=vm102/ dev00142DE082EB/rawdata/sector0		
Fehler bspw.	Торіс	vm102/dev <geräte-seriennummer>/status</geräte-seriennummer>		
falscher Para- meter oder Adresse, Mes- sage-Länge überschritten u.a.	Message			
Heartbeat	Торіс	vm102/dev <geräte-seriennummer>/hb</geräte-seriennummer>		
	Message	"vm102" + Zählerwert		
	Beispiel	Topic: vm102/dev00142DE082EB/hb Message: vm102 hb: 34		

4. IP-Adresse des HUB-VM102 ändern

- 1. Verbinden Sie den Ethernetanschluss des HUB-VM102 mit dem Ethernetanschluss Ihres PCs.
- 2. Um mit dem Modul zu kommunizieren ändern Sie die IP-Einstellungen des Netzwerkanschlusses Ihres PCs wie folgt:

- 3. Installieren Sie das Programm Putty und öffnen Sie es.
- 4. Im Dialogfenster **Putty Configuration** geben Sie unter **Host Name (or IP address)** die neue IP-Adresse ein und wählen Sie bei **Connection type** die Option **Other** aus.

Category:					
Session	Basic options for y	Basic options for your PuTTY session			
Logging	Specify the destination you w	Specify the destination you want to connect to			
-Keyboard	Host Name (or IP address)		Port		
Bell	192.168.1.200		23		
- Features	Connection type:				
Appearance	<u>S</u> SH OSerial OC	Other: Teln	et ~		
Selection Colours Connection Data Proxy SSH Serial Telnet Blooin	Saved Sessions		Load Save Delete		
About	Close window on exit: Always Never	Only on	clean exit		

Beispiel für das Dialogfenster von Putty

- 5. Klicken Sie **Open**, um in die Putty Console zu gelangen.
- 6. Geben Sie nun die folgenden drei Befehle nacheinander ein und bestätigen Sie jede Eingabe mit Enter:
 - a. CONF:ETH:IPAD xxx.xxx.xxx.xxx xxx.xxx.xxx = lhre neue IP-Adresse
 - b. SAVE

Programmierhandbuch

HUB-VM102

16

c. RESET

7. Überprüfen Sie die neu eingerichtete IP-Adresse. Geben Sie dazu den Befehl CONF:ETH:IPAD? in die Putty Console ein.

Die neue IP-Adresse sollte nun angezeigt werden.

5. Parameterverzeichnis

5.1. Parameter für Signalverarbeitung

Parameter Kanal 1	Parameter Kanal 1	Beschreibung
P1	P2	Effektivwert in μV
P3	P4	Spitzenwert in µV
P5	P6	Dominante Frequenz IEPE-Sensor in mHz
P7	P8	Versorgungsspannung IEPE-Sensor in mV
P9 (kanaluna	lbhängig)	Versorgungsspannung analog (~19 V)
P10 (kanalunabhängig)		Status: Bit 01: Sampling-Status Kanal 1 Bit 23: Sampling-Status Kanal 2 0 = kein Sampling 1 = Permanentes Sampling, kein Trigger ausgelöst oder deakti- viert 2 = Sampling, Trigger wurde ausgelöst Bit 4: Pre-Trigger Speicher wird gefüllt
P11	P21	Konfiguration Kanal: Bit 0: Kanal ON/OFF Bit 1: Hochpass On/Off Bit 2: Beschleunigung/Geschwindigkeit (Integrator On/Off) Bit 3: Tiefpass On/Off Bit 4: Biquad Filter On/Off
P12	P22	Verstärkungskorrektur in ‰-Schritten (default = 1000)
P13	P23	Grenzfrequenz Hochpass-Filter in mHz
P14	P24	Grenzfrequenz Integrator in mHz
P15	P25	Grenzfrequenz Tiefpass in Hz
P16	P26	Grenzfrequenz Effektivwert-Filter in mHz
P17	P27	Erster Biquad-Koeffizient
P18	P28	Anzahl Biquad-Elemente
P31	P41	Anstiegszeit Spitzenwert-Detektor (µs)

Programmierhandbuch

Parameter Kanal 1	Parameter Kanal 1	Beschreibung	
P32	P42	Abfallzeit Spitzenwert-Detektor (ms)	
P33	P43	Minimale Signalgröße für Peak-Erkennung (P5,6) in mV	
P33 P43 P50 (kanalunabhängig)		Sampling-Konfiguration: 0: Sampling OFF 1: permanent 2: getriggert durch Effektivwert Kanal 1 3: getriggert durch Effektivwert Kanal 2 4: getriggert durch Effektivwert Kanal 1 Kanal 2 10: getriggert durch digital Input 1 (Übergang L/H) 11: getriggert durch digital Input 2 (Übergang L/H) 12: getriggert durch digital Input 2 (Übergang L/H) 13: getriggert durch digital Input 2 (Übergang H/L) 14: getriggert durch digital Input 2 (Übergang H/L) 15: getriggert durch Frequenz digital Input 1 (steigend) 15: getriggert durch Frequenz digital Input 2 (steigend) 17: getriggert durch Frequenz digital Input 2 (fallend) >21: reset write-pointer, switch off sampling, finish trigger- sampling Nach Trigger-Event wird Parameter P50 automatisch auf 0 gesetzt.	
P51	P52	Trigger-Schwelle in µV (P50 = 27) oder mHz (P50 = 1417)	
P53 (kanalun	abhängig)	Pre-Trigger (in samples 1/48000 Hz)	
P55 (kanalunabhängig)		FFT-Steuerung 0: keine Berechnung 1: Starte FFT-Berechnung Kanal 1 2: Starte FFT-Berechnung Kanal 2 Parameter wird nach FFT-Berechnung gelöscht	
P56 (kanalunabhängig)		Bezugspegel in mV für FFT-Berechnung in dB Wenn Null: FFT-Ergebnis absolut mit 0,1 µV-Auflösung	
P60 (kanalunabhängig)		Adress-Register Datenaustausch 0x0: Gerätedaten SNR: 4Byte Firmware-Rev.: 4Byte Hardware-Rev.: 4Byte Dev. Name: 16Byte ("HUB-VM102")	

Programmierhandbuch

Parameter Kanal 1	Parameter Kanal 1	Beschreibung
		0x01: RMS-Buffer Kanal 1 (4096 Byte)
		0x02: RMS-Buffer Kanal 2 (4096 Byte)
		0x030x0A: Datenspeicher Kanal 1 (8 Speicherbereiche zu je 64 kB)
		0x0B0x12: Datenspeicher Kanal 2 (8 Speicherbereiche zu je 64 kB) (ADC-Rohwerte)
		0x13: FFT-Daten Kanal 1 (64 kB)
		0x14: FFT-Daten Kanal 2 (64 kB)
		(wenn P56 = 0: linear mit 0,1 µV-Auflösung; ansonsten in 0,001 dB relativ zu P56)
		0x0808 0000: ungenutzte Flash-Bank für Firmware-Update
P61	P62	Aktueller Write-Pointer SDRAM-Datenarray
P63	P64	Aktueller Write-Pointer RMS-Datenarray
P65	P66	Frequenz digital-input in mHz

5.2. Parameter für Gerätekonfiguration

Parameterbezeichnung	Beschreibung	Para- meter
Update Biquad-Koeffizi- ent	Bit 015: Nummer (039)	P70
	Bit 1617:	
	1: Lesen	
	2: Schreiben	
	3: alle Biquad-Koeffizienten (039) in EEPROM spei- chern	
	Koeffizient a1	P71
	Koeffizient a ₂	P72
	Koeffizient b ₀	P73
	Koeffizient b ₁	P74
	Koeffizient b ₂	P75
	Skalierung zwischen 0 und 31 (Bit-Verschiebung der Koeffizienten)	P76
DSP-Rechnerauslastung Kanal 1	Soll zwischen 2540 (%) liegen	P81

Programmierhandbuch

Parameterbezeichnung	Beschreibung	Para- meter
DSP-Rechnerauslastung Kanal 2	Soll zwischen 2540 (%) liegen	P82
MQTT Autopublish perio- de	in Sekunden	P88
MQTT Autopublish enab- le Parameter 19	Bit 1: Parameter 1 Bit 2: Parameter 2 	P89
IP-Adresse	192.168.1.200	P91
Netzmaske	255.255.255.0	P92
Gateway-Adresse	192.168.1.1	P93
MQTT-Server-Adresse	192.168.1.2	P94
Schaltschwelle dig. Input	Schwelle in mV	P95
Modbus-ID	1 254 (Parameter danach in EEPROM speichern + Reset) Ist der Parameter außerhalb des zulässigen Bereichs, wird der Standardwert (1) übernommen	P96
Modbus-Baudrate	9600 115200 1000000 (Parameter danach in EEPROM speichern + Reset) Ist der Parameter außerhalb des zulässigen Bereichs, wird der Standardwert (115200) übernommen	P97
Abtast-Frequenz	 <u>48000</u>, 12000 (4 x oversampling), 6000 (8 x oversampling) (Parameter danach in EEPROM speichern + Reset) Ist der Parameter außerhalb des zulässigen Bereichs, wird der Standardwert (48000) übernommen 	P98
Device Control-Reg	0: OFF 1: Normaler Betrieb	P100
Device Error/ Status-Reg	Bit 015: Status Bit 15: next modbus device is enabled Bit 1631: Fehler Bit 16: Watchdog Reset Bit 17: EEPROM Fehler Bit 18: Parameter Fehler (ungültiger Wertebereich)	P101

Programmierhandbuch

Parameterbezeichnung	Beschreibung	Para- meter
Device Config	Bit 0: Store Parameter to EEPROM (only in Device- Mode OFF)	P102
	Bit 1631: 0xffff: Device Reset (only in Device-Mode OFF)	
Backplan-Bus	0: Modul gesperrt (default)	P103
Freigabe benachbartes Modul	1: Modul freigegeben	

Dieses Dokument wird in elektronischer Form im Download Portal von in.hub bereitgestellt. Gedruckte Versionen oder nicht explizit von in.hub zur Verfügung gestellte Kopien gelten als unkontrolliert.

Die Originalsprache dieses Dokuments ist Deutsch.

Made in Germany.

Service & Support: service@inhub.de | https://community.inhub.de/

in.hub Download Portal: https://download.inhub.de/

in.hub GmbH Technologie-Campus 1 DE-09126 Chemnitz

> +49 371 335 655 00 info@inhub.de